Exercise 3.4 – Question 1: Reducing to Linear Form
📚 About Exercise 3.4
Focus: Solve pairs of equations by reducing them to linear form through substitution.
Key Strategy: When equations contain complex expressions (reciprocals, square roots, fractions), substitute them with simpler variables to create linear equations.
Types covered in this question:
- Reciprocals: \( \frac{1}{x}, \frac{1}{y} \)
- Square roots: \( \frac{1}{\sqrt{x}}, \frac{1}{\sqrt{y}} \)
- Complex fractions: \( \frac{1}{x-1}, \frac{1}{y-2} \)
- Expressions: \( \frac{1}{x+y}, \frac{1}{x-y} \)
📐 General Method
- Identify: Find the complex expressions in the equations
- Substitute: Let these expressions equal new variables (u, v, p, q, etc.)
- Simplify: Rewrite equations in terms of new variables (now linear)
- Solve: Use elimination or substitution to solve for new variables
- Back-substitute: Find original variables from new variables
- Verify: Check solution in original equations
📑 Question Parts
- Part (i): \( \frac{1}{2x} + \frac{1}{3y} = 2 \), \( \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6} \)
- Part (ii): \( \frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2 \), \( \frac{4}{\sqrt{x}} – \frac{9}{\sqrt{y}} = -1 \)
- Part (iii): \( \frac{4}{x} + 3y = 14 \), \( \frac{3}{x} – 4y = 23 \)
- Part (iv): \( \frac{5}{x-1} + \frac{1}{y-2} = 2 \), \( \frac{6}{x-1} – \frac{3}{y-2} = 1 \)
- Part (v): \( \frac{7x – 2y}{xy} = 5 \), \( \frac{8x + 7y}{xy} = 15 \)
- Part (vi): \( 6x + 3y = 6xy \), \( 2x + 4y = 5xy \)
- Part (vii): \( \frac{10}{x+y} + \frac{2}{x-y} = 4 \), \( \frac{15}{x+y} – \frac{5}{x-y} = -2 \)
Part (i) – Reciprocal Equations
\( \frac{1}{2x} + \frac{1}{3y} = 2 \) …(1)
\( \frac{1}{3x} + \frac{1}{2y} = \frac{13}{6} \) …(2)
Step 1: Substitute
\( \frac{1}{x} = u \) and \( \frac{1}{y} = v \)
Step 2: Rewrite Equations
Multiply by 6: \( 3u + 2v = 12 \) …(3)
Equation (2) becomes: \[ \frac{u}{3} + \frac{v}{2} = \frac{13}{6} \]Multiply by 6: \( 2u + 3v = 13 \) …(4)
Step 3: Solve
Multiply (3) by 3: \( 9u + 6v = 36 \)
Multiply (4) by 2: \( 4u + 6v = 26 \)
Subtract: \( 5u = 10 \) → \( u = 2 \)
Substitute back: \( v = 3 \)
Step 4: Find x and y
Part (ii) – Square Root Reciprocals
\( \frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2 \) …(1)
\( \frac{4}{\sqrt{x}} – \frac{9}{\sqrt{y}} = -1 \) …(2)
Step 1: Substitute
\( \frac{1}{\sqrt{x}} = u \) (so \( \sqrt{x} = \frac{1}{u} \) and \( x = \frac{1}{u^2} \))
\( \frac{1}{\sqrt{y}} = v \) (so \( \sqrt{y} = \frac{1}{v} \) and \( y = \frac{1}{v^2} \))
Step 2: Rewrite Equations
Step 3: Solve Using Elimination
Step 4: Find x and y
Step 5: Verification
LHS = \( \frac{2}{\sqrt{4}} + \frac{3}{\sqrt{9}} = \frac{2}{2} + \frac{3}{3} = 1 + 1 = 2 \) = RHS ✓
Check in equation (2): \( \frac{4}{\sqrt{x}} – \frac{9}{\sqrt{y}} = -1 \)LHS = \( \frac{4}{\sqrt{4}} – \frac{9}{\sqrt{9}} = \frac{4}{2} – \frac{9}{3} = 2 – 3 = -1 \) = RHS ✓
Part (iii) – Mixed Reciprocal and Linear
\( \frac{4}{x} + 3y = 14 \) …(1)
\( \frac{3}{x} – 4y = 23 \) …(2)
Step 1: Substitute
\( \frac{1}{x} = u \) (so \( x = \frac{1}{u} \))
Keep y as it is
Step 2: Rewrite Equations
Step 3: Solve Using Elimination
Equation (3) × 4: \( 16u + 12y = 56 \) …(5)
Equation (4) × 3: \( 9u – 12y = 69 \) …(6)
Add equations (5) and (6): \[ 25u = 125 \] \[ u = 5 \]Step 4: Find x
Step 5: Verification
LHS = \( \frac{4}{\frac{1}{5}} + 3(-2) = 4 \times 5 – 6 = 20 – 6 = 14 \) = RHS ✓
Check in equation (2): \( \frac{3}{x} – 4y = 23 \)LHS = \( \frac{3}{\frac{1}{5}} – 4(-2) = 3 \times 5 + 8 = 15 + 8 = 23 \) = RHS ✓
Part (iv) – Complex Fractions
\( \frac{5}{x-1} + \frac{1}{y-2} = 2 \) …(1)
\( \frac{6}{x-1} – \frac{3}{y-2} = 1 \) …(2)
Step 1: Substitute
\( \frac{1}{x-1} = u \) (so \( x – 1 = \frac{1}{u} \) and \( x = \frac{1}{u} + 1 \))
\( \frac{1}{y-2} = v \) (so \( y – 2 = \frac{1}{v} \) and \( y = \frac{1}{v} + 2 \))
Step 2: Rewrite Equations
Step 3: Solve Using Elimination
Step 4: Find x and y
Step 5: Verification
LHS = \( \frac{5}{4-1} + \frac{1}{5-2} = \frac{5}{3} + \frac{1}{3} = \frac{6}{3} = 2 \) = RHS ✓
Check in equation (2): \( \frac{6}{x-1} – \frac{3}{y-2} = 1 \)LHS = \( \frac{6}{3} – \frac{3}{3} = 2 – 1 = 1 \) = RHS ✓
Part (v) – Algebraic Fractions
\( \frac{7x – 2y}{xy} = 5 \) …(1)
\( \frac{8x + 7y}{xy} = 15 \) …(2)
Step 1: Simplify
Step 2: Substitute
\( \frac{1}{x} = u \) and \( \frac{1}{y} = v \)
Equation (3) becomes: \[ 7v – 2u = 5 \quad \text{…(5)} \] Equation (4) becomes: \[ 8v + 7u = 15 \quad \text{…(6)} \]Step 3: Solve Using Elimination
Equation (5) × 7: \( 49v – 14u = 35 \) …(7)
Equation (6) × 2: \( 16v + 14u = 30 \) …(8)
Add equations (7) and (8): \[ 65v = 65 \] \[ v = 1 \]Step 4: Find x and y
Step 5: Verification
LHS = \( \frac{7(1) – 2(1)}{1 \times 1} = \frac{7 – 2}{1} = 5 \) = RHS ✓
Check in equation (2): \( \frac{8x + 7y}{xy} = 15 \)LHS = \( \frac{8(1) + 7(1)}{1 \times 1} = \frac{8 + 7}{1} = 15 \) = RHS ✓
Part (vi) – Product Form
\( 6x + 3y = 6xy \) …(1)
\( 2x + 4y = 5xy \) …(2)
Step 1: Divide by xy
Step 2: Substitute
\( \frac{1}{x} = u \) and \( \frac{1}{y} = v \)
Equation (3) becomes: \[ 6v + 3u = 6 \] \[ 3u + 6v = 6 \]Divide by 3: \( u + 2v = 2 \) …(5)
Equation (4) becomes: \[ 2v + 4u = 5 \] \[ 4u + 2v = 5 \quad \text{…(6)} \]Step 3: Solve Using Elimination
Step 4: Find x and y
Step 5: Verification
LHS = \( 6(1) + 3(2) = 6 + 6 = 12 \)
RHS = \( 6(1)(2) = 12 \)
LHS = RHS ✓
Check in equation (2): \( 2x + 4y = 5xy \)LHS = \( 2(1) + 4(2) = 2 + 8 = 10 \)
RHS = \( 5(1)(2) = 10 \)
LHS = RHS ✓
Part (vii) – Sum and Difference
\( \frac{10}{x+y} + \frac{2}{x-y} = 4 \) …(1)
\( \frac{15}{x+y} – \frac{5}{x-y} = -2 \) …(2)
Step 1: Substitute
\( \frac{1}{x+y} = u \) (so \( x + y = \frac{1}{u} \))
\( \frac{1}{x-y} = v \) (so \( x – y = \frac{1}{v} \))
Step 2: Rewrite Equations
Divide by 2: \( 5u + v = 2 \) …(3)
Equation (2) becomes: \[ 15u – 5v = -2 \quad \text{…(4)} \]Step 3: Solve Using Elimination
Step 4: Find x and y
Step 5: Visual Representation
📊 Finding x and y from Sum and Difference
Visual representation of solving x + y = 5 and x – y = 1
Step 6: Verification
LHS = \( \frac{10}{3+2} + \frac{2}{3-2} = \frac{10}{5} + \frac{2}{1} = 2 + 2 = 4 \) = RHS ✓
Check in equation (2): \( \frac{15}{x+y} - \frac{5}{x-y} = -2 \)LHS = \( \frac{15}{5} - \frac{5}{1} = 3 - 5 = -2 \) = RHS ✓
📊 Summary of All Solutions
| Part | Type | Solution |
|---|---|---|
| (i) | Reciprocals | \( x = \frac{1}{2}, y = \frac{1}{3} \) |
| (ii) | Square root reciprocals | \( x = 4, y = 9 \) |
| (iii) | Mixed | \( x = \frac{1}{5}, y = -2 \) |
| (iv) | Complex fractions | \( x = 4, y = 5 \) |
| (v) | Algebraic fractions | \( x = 1, y = 1 \) |
| (vi) | Product form | \( x = 1, y = 2 \) |
| (vii) | Sum and difference | \( x = 3, y = 2 \) |
⚠️ Common Mistakes to Avoid
✅ Correct: Always convert u, v back to x, y at the end.
✅ Correct: \( \frac{7x - 2y}{xy} = \frac{7}{y} - \frac{2}{x} \), not \( \frac{7}{x} - \frac{2}{y} \)
✅ Correct: If \( \frac{1}{\sqrt{x}} = \frac{1}{2} \), then \( \sqrt{x} = 2 \), so \( x = 4 \) (not -4)
✅ Correct: Always substitute back into the original (not simplified) equations.
💡 Key Points to Remember
- Substitution Strategy:
- Identify complex expressions in equations
- Replace with simple variables (u, v, p, q)
- Solve the linear system
- Convert back to original variables
- Common Substitutions:
- \( \frac{1}{x} = u \) → \( x = \frac{1}{u} \)
- \( \frac{1}{\sqrt{x}} = u \) → \( \sqrt{x} = \frac{1}{u} \) → \( x = \frac{1}{u^2} \)
- \( \frac{1}{x-a} = u \) → \( x - a = \frac{1}{u} \) → \( x = \frac{1}{u} + a \)
- \( \frac{1}{x+y} = u \) and \( \frac{1}{x-y} = v \)
- Simplification Tips: